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THETA TOPOLOGY AND ITS APPLICATION TO THE
FAMILY OF ALL TOPOLOGIES ON X
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Abstract. Topology may described a pattern of existence of ele-
ments of a given set X. The family τ(X) of all topologies given on a
set X form a complete lattice. We will give some topologies on this
lattice τ(X) using a topology on X and regard τ(X) a topological
space.

Our purpose of this study is to give new topologies on the family
τ(X) of all topologies induced by old one and its θ topology and to
compare them.

1. Introduction

Let X be a set. The family τ(X) would consist of all topologies on a
given fixed set X. Here we want to give topologies on the family τ(X)
of all the topologies using the given a topology τ on X and compare the
topologies from new one.

The family τ(X) of all topologies on X form a complete lattice, that
is, given any corlection of topologies on X, there is a smallest (respec-
tively largest) topology on X containing(contained in) each member of
the corlection. Of course, the partial order ≤ on τ(X) is defined by
inclusion ⊆ naturally.

The smallest topology in this lattice τ(X) is {∅, X} and the largest
one is P(X). These topologies will sometimes be denoted by 0 and 1
respectively.

In the sequel, the closure and interior of A are denoted by Ā and
int(A) in a topological space (X, τ). The θ-closure of a subset G of a
topological space (X, τ) is defined [12] to be the set of all point x ∈ X
such that every closed neighborhood of x intersect G non-emptily and is
denoted by Ḡθ(cf. [1],[6]). Of course for any subset G in X, G ⊂ Ḡ ⊂ Ḡθ
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and Ḡθ is closed in X. The subset G is called θ-closed if Ḡθ = G. If G
is open, the Ḡ = Ḡθ.

Similarly, the θ-interior of a subset G of a topological space (X, τ) is
defined to be the set of all point x ∈ X for which there exists a closed
neighborhood of x contained in G. The θ-interior of G is denoted by
intθG. Naturally, for any subset G in X, intθ(G) ⊂ G. An open set U
in (X, τ) is called θ-open if U = intθ(U). By the definition of θ-open,
the corlection of all θ-open in a topological space (X, τ) form a topology
τθ on X which will called the θ topology induced by τ which is related
to the semi-regular topology on (X, τ).

The semi-regular topology τs is the topology having as its base the
set of all regular open sets. A subset A of a topological space X is called
regular open [11] if A = intĀ. For any subset A of X, int(Ā) is always
regular open. The corlection of all regular open subsets of a topological
space (X, τ) form a base for a topology τs on X coarser than τ , (X, τs)
is called the semiregularization of (X, τ).

Theorem 1.1. [6] Let X be a topological space. If V ⊂ X is θ-open
and x ∈ V then there exists a regular-open set U such that x ∈ U ⊂
Ū ⊂ V .

Theorem 1.1 implies that in any topological space, τθ ≤ τs ≤ τ . The
converse need not true [6]. The following theorems are stated in [6].

Theorem 1.2. A topological space (X, τ) is regular if and only if
τθ = τ .

Theorem 1.3. Let A ⊂ X be θ-closed and x /∈ A. Then there exists
a regular-open set which separate x and A.

Theorem 1.4. Let f : X → Y be continous. If V ⊂ Y is θ-open,
then f−1(V ) is θ-open.

Theorem 1.5. Let f : X → Y be a function from X onto Y that is
both open and closed. Then f preserves θ-open sets.

We should recall the definitions of almost-continuity and θ-continuity:
A function f : X → Y is almost-continuous(θ-continuous) if for each
x ∈ X and each regular-open V ( open V ) containing f(x), there exists
a open set U containing x such that f(U) ⊂ V (f(Ū) ⊂ V̄ ). It readily
follows that continuity ⇒ almost-continuity ⇒ θ-continuity.



Theta topology and its application to the family of all topologies on X 433

2. Compare of θ topologies defined different topologies

To notice the closure and interior of a subset A in the specific topo-
logical space (X, τ), they will be denoted by Āτ and intτ (A) instead of Ā
and int(A) respectively. Hence an θ-interior of G in (X, τ) is denoted by
intτθ(G) and an θ-open set U in (X, τ) will be denoted by U = intτθ(U).

Lemma 2.1. Let ζ, η be topologies on X. If ζ ≤ η, then Āη ⊂ Āζ

and intζ(A) ⊂ intη(A). Hence if A is open and closed in (X, ζ), then A
is also open and closed in (X, η) respectively.

Proof. We will prove only the closed case. The other case follows di-
rectly from the definition. Let x ∈ Āη. Then for any open neighborhood
G of x in (X, η), G∩A 6= ∅. This implies that for any open neighborhood
G of x in (X, ζ), G∩A 6= ∅. Hence Āη ⊂ Āζ . Consequently if A is closed
in (X, ζ) then A ⊂ Āη ⊂ Āζ = A. Therefore A is closed in (X, η).

Theorem 2.2. Let ζ, η be topologies on X and ζ ≤ η. Then ζθ ≤ ηθ.

Proof. We will be sufficient to prove that if U is θ-open in (X, ζ),
then it is also θ-open in (X, η). Let U be a θ-open set in (X, ζ). Then
U = intζθ(U). Let x ∈ U . Then there exists a closed neighborhood V
of x in (X, ζ) which contained in U . Since ζ ≤ η, By above Lemma
2.1, V is also a closed neighborhood V of x in (X, η) which contained in
U . This implies U ⊂ intηθ(U) ⊂ U . Hence U is θ-open in (X, η). This
completes the proof.

3. Topologies on the family τ(X) induced from by a given
topology τ

Let (X, τ) be a topological space. We want to give some topologies
on τ(X) induced by the given topology τ and compare these topologies.

Definition 3.1. [5] Let (X, τ) be a topological space, and G ∈ τ .
Let i(G)={ζ∈τ(X) |G∈ζ} and denote ε={i(G)|G∈τ}, a family of subset
of τ(X). Then there is exactly one topology Inτ on τ(X) with ε as a
subbasis. We will call this topology as inner topology induced by the
topology τ . Note that In1 need not be the discrete topology in τ(X).

Theorem 3.2. [4] (τ(X), In1) is T0 space.

Let ζ ≤ η. For all G ∈ ζ, G ∈ η. That is, if ζ ∈ i(G), then
i(G) ∩ {η} 6= ∅. This implies ζ ∈ {η}. Conversely ζ ∈ {η} implies
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ζ ≤ η. If this relation holds we say that ζ is a specialization of η [7]. For
any η ∈ τ(X) we will denote the subset {ζ ∈ τ(X)|ζ ≥ η} by ↑ (η). (We
shall also use later the notation ↓ (η) for {ζ ∈ τ(X)|ζ ≤ η}. Then since
i(G) = { ζ ∈ τ (X) | G ∈ ζ } , i(G) = ↑ ({∅, X, G}). Hence ζ ∈ {η}
iff ζ ≤ η. Since Alexandrov topology Υ on τ(X) is the corlection of all
upper sets in τ(X) (i.e. sets U such that η ∈ U and η ≤ ζ imply ζ ∈ U)
[7], i(G) ∈ Υ. Hence we have the following result

Theorem 3.3. [4] If τ ≤ ζ ≤ 1, then Inτ ≤ Inζ ≤ In1 ≤ Υ.

Combining this theorem and Theorem 1.1 we can have

Corollary 3.4. Inτθ
≤ Inτs ≤ Inτ ≤ In1 ≤ Υ,

(Inτ )θ ≤ (Inτ )s ≤ Inτ ≤ In1 ≤ Υ.

Now we will consider the continuity of induced maps. The next the-
orem was known in [4]:

Theorem 3.5. Let f :(X, τ) → (Y , η) be a continuous map. If we
define a map f∗:(τ(X), Inτ ) → (τ(Y ), Inη) by f∗(w)={U ⊂ Y |f−1(U) ∈
w}, then the map f∗ is continuous. If γ ≤ δ, then f∗(γ) ≤ f∗(δ) and
f∗(τ)≥η. If, furthermore, (Z, θ) is a topological space and g: (Y , η) →
(Z, θ) is a map, then

(g ◦ f)∗ = g∗ ◦ f∗.
Finally, if f :(X ,τ) → (X, τ) is the identity homeomorphism, then so is
f∗.

If we consider In as a map from τ(X) to τ(τ(X)) defined by In(η) =
Inη, then we have some result:

Theorem 3.6. [4] In : (τ(X),Υ) → (τ(τ(X)), Υ) is continuous.

Proof. Let ζ ∈ τ(X) and K is a neighborhood of In(ζ) = Inζ . Then
K is a upper set in τ(τ(X)). On the other hand the upper set ↑ (ζ) in
τ(X) is a neighborhood of ζ. We will show that In(↑ (ζ)) ⊂ K. Let
δ ∈↑ (ζ). Then δ ≥ ζ and Inδ ≥ Inζ . Hence we have Inδ ∈ K.

Corollary 3.7. In : (τ(X), Inτ ) → (τ(τ(X)), InInτ ) is continuous.

Proof. Since Inτ is subset of Υ whose elements i(G)s are all upper
set, it is clear that the restriction function is continuous.

Let f : (X, τ)→ (Y , η) be a continuous surjective map. If we define a
map f∗ : τ(X) → τ(Y ) by f∗(w)={U ⊂ Y |f−1(U) ∈ w}, then f∗(0) = 0
and f∗(1) = 1. Let ω ∈ τ(X). For any subbasic open neighborhood
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i(G) of f∗(ω), G ∈ f∗(ω). Thus f−1(G) ∈ ω. Hence ω ∈ i(f−1(G)).
So that i(f−1(G)) is an open neighborhood of ω. Conversely, if ζ ∈
i(f−1(G)) then f−1(G) ∈ ζ, G ∈ f∗(ζ), f∗(ζ) ∈ i(G), and ζ ∈ f−1∗ (i(G)).
Consequently we have

f−1
∗ (i(G)) = i(f−1(G)).

Note that i(G)∪ {0} is also complete sublattice of τ(X) for a G ∈ τ .
We will denote this sublattice i(G) ∪ {0} by iF (G). Then naturally we
can restrict domain of definition of f∗ to iF (H) for some open H in X.
Hence we can have f∗ : iF (f−1(G)) → iF (G) for each open G in (Y, η).
Thus we can have:

Theorem 3.8. [4] Let f :(X, τ) → (Y , η) be a continuous bijective
map. Then the induce map f∗ : iF (f−1(G)) → iF (G) is bijective for
each open G in (Y, η).

Let X, Y be sets. Then the cardinality of τ(X) × τ(Y ) is quite
different to the cardinality of τ(X×Y ). For example, let X = {a, b}, Y =
{1, 2, 3, }. Then card(τ(X))= 4, card(τ(Y )) = 29. But card(τ(X × Y ))
= 209525 [9].

Hence we have τ(X × Y ) � τ(X)× τ(Y ) in general.
Let (X, τ) and (Y, ζ) be topological spaces. We may assume that

τ(X) and τ(Y ) are given the topologies Inτ and Inζ respectively and
assume that τ(X × Y ) is given topology Inτ×ζ . The multiplication
× : τ(X) × τ(Y ) → τ(X × Y ) is defined by ×(α, β) = α × β naturally.
Then we have

Theorem 3.9. The multiplication × : τ(X) × τ(Y ) → τ(X × Y ) is
continuous.

Proof. Let (α, β) ∈ τ(X)× τ(Y ). Then α×β ∈ τ(X ×Y ). If i(W ) is
a neighborhood of ×(α, β) = α× β, where W is open in (X × Y, τ × ζ).
Then we may assume that W = WX ×WY is basic open set in (τ(X ×
Y ), α× β). Hence since projection maps are open maps, πX(W ) = WX

and πY (W ) = WY are also open sets in (X,α) and (Y, β) respectively.
Hence (α, β) ∈ i(WX) × i(WY ). Moreover ×(i(WX) × i(WY )) ⊂ i(W ).
In fact, if δ ∈ i(WX) and γ ∈ i(WY ), then WX ∈ δ and WY ∈ γ. Hence
W = WX ×WY ∈ δ × γ. This completes the proof.

Hence we have

Theorem 3.10. Let (X, τ) and (Y, ζ) be topological spaces. Then
we have the following commutative diagram:
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τ(X)× τ(Y ) ×−→ τ(X × Y )

↓ In× In ↓ In

τ(τ(X))× τ(τ(Y )) ×−→ τ(τ(X × Y )).

Proof. It is sufficient to show that ×(Inα × Inβ) = Inα×β for an
element (α, β) ∈ τ(X) × τ(Y ). Let (α, β) ∈ i(U) × i(V ) ∈ Inα × Inβ.
Then U and V are open sets in (X, α) and (Y, β) respectively. Hence
U×V is an open set in (X×Y, α×β). Hence U×V ∈ (α×β), i.e.(α×β) ∈
×(i(U)×i(V )) ⊂ i(U×V ). Hence ×(Inα×Inβ) ⊂ Inα×β. Conversely if
δ×γ ∈ i(W ) where W is an open in (X×Y, τ×ζ). Then we may assume
that W = WX × WY is basic open set in (X × Y, τ × ζ). Hence, the
projections πX(W ) = WX and πY (W ) = WY are open sets in (X, τ) and
(Y, ζ) respectively. Moreover ×(i(WX)× i(WY )) ⊂ i(W ). Consequently
we have ×(Inα × Inβ) ⊃ Inα×β This completes the proof.

4. Topology on the family τ(X) related to the θ topologies
on X

Definition 4.1. Let (X, τ) be a topological space, and G ∈ τ . Let
θ(G) = {ζ ∈ τ(X) | G is θ − open in ζ }. And denote β = {θ(G)|G ∈ τ},
a family of subset of τ(X). Then there is exactly one topology θτ on
τ(X) with β as a subbasis. We will call the θτ the θ topology induced
by the topology τ .

Theorem 4.2. If τ ≤ ζ ≤ 1, then θτ ≤ θζ ≤ θ1 ≤ Υ.

Proof. For any G ∈ τ ≤ ζ, by the definition of θ(G), we can naturally
have θτ ≤ θζ . Now we will prove that every θ(G) is upper set in τ(X).
Let δ ∈ θ(G). Then G is an θ-open in (X, δ). Hence G ∈ δθ. If δ ≤ γ,
we have by Theorem 2.1, G ∈ γθ. This means G is θ-open in (X, γ).
That is γ ∈ θ(G). Hence θ(G) is upper set in τ(X). This completes the
proof.

Now we consider θ as a map from τ(X) to τ(X). Then we can define
map θ by θ(η) = ηθ. Consequently we have next result:

Theorem 4.3. Let (X, τ) be a topological space. Then the induced
map

θ : (τ(X), θτ ) → (τ(X), θτ )
is continuous.
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Proof. Let ζ ∈ τ(X) and θ(K) is a neighborhood of θ(ζ) = ζθ where
K ∈ τ . Then since ζθ = {U ∈ ζ|U : θ − open in (X, ζ)}, K is a θ-open
set in (X, ζθ). Hence it is also θ-open in (X, ζ). Consequently ζ ∈ θ(K),
i.e. θ(K) is a neighborhood of ζ which satisfied that θ(θ(K)) ⊂ θ(K).
This completes the Theorem.

The map θ : (τ(X), θτ ) → (τ(X), θτ ) will be called θ-operator. Moreover
this map satisfies that

Corollary 4.4. θ(ζ ∧ η) ≤ θ(ζ) ∧ θ(η) and θ(ζ) ∨ θ(η) ≤ θ(ζ ∨ η).

Proof. This corollary follows from the above definition of map θ and
Theorem 4.1.

Now we want to know the relations between θτ and Inτθ
. Let η ∈

θ(G) ∈ θτ , then G ∈ η, i.e. η ∈ i(G). Hence it is natural that θ(G) ⊂
i(G). Let i(G) be a sub basic open in Inτθ

. Then G ∈ τθ. Hence G
is θ-open in τ , that is , G = intτθ(G). Hence if η ∈ i(G) and (X, η) is
regular, then by above Theorem 1.2, G is also θ-open in (X, η). Hence
η ∈ θ(G), i.e. i(G) = θ(G). Thus we have the following theorem.

Theorem 4.5. Let (X, τ) is a regular space. If we denote τreg(X)
by the subset of all regular topologies in τ(X). Then the subspace
τreg(X) of the space (τ(X), θτ ) and the subspace τreg(X) of the space
(τ(X), Inτθ

) are identical.

For a topological space (X, τ), the corlection of all open neighbor-
hoods of p and empty set, that is, {V ∈ τ |p ∈ V } ∪ {∅} becomes a
topology on X for any point p ∈ X. We will denote such a topology by
τp and call localized topology of τ at p. Furthermore, we will denote the
localized topology of the discrete topology P(X) on X at p by 1p.

Denote τp(X) = {ηp | η ∈ τ(X)} for a point p ∈ X. Since τ(X)
is a complete lattice, we can easily find that τp(X) is a sublattice of
τ(X). The smallest element of this sublattice τp(X) is 0p=0, the largest
element is P(X)p=1p 6=1. We will call this sublattice τp(X) as sublattice
of all localized topologies at p in X.

Now we will regard any member τ of τ(X) as a map from X to
∪pτp(X) ⊂ τ(X) defined by τ(p) = τp. Hence this map τ acts like a
vector field on X. Such a map f : X → τ(X) defined by f(p)∈ τp(X)
will be called topology field on X [5].

Theorem 4.6. [5] Topology field ζ:(X,τ) → (τ(X), Inτ ) is continu-
ous.

Now we will prove
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Theorem 4.7. If (X, ζ) is a θ topological space, then the topology
field ζ:(X,τ) → (τ(X), θτ ) is continuous.

Proof. Let p ∈X and θ(G) be a subbasic open neighborhood of ζ(p)=ζp.
Then G is θ-open in (X, ζp). This implies G is θ-open in (X, ζ) because
G is open set in (X, ζ) which contains the point p. Moreover since G∈τ ,
G is a neighborhood of p. Hence if q∈G, ζ(q)=ζq∈θ(G), so that ζ(G) ⊂
θ(G). This shows that topology field ζ is continuous.

Corollary 4.8. If (X, ζ) is a regular topological space, then the
topology field ζ:(X,τ) → (τ(X), θτ ) is continuous.

Let f : (X, τ) → (Y , η) be a continuous surjective map. If we define
a map f∗ : (τ(X), θτ ) → (τ(Y ), θη) by f∗(w)={U ⊂ Y |f−1(U) ∈ w},
then f∗(0) = 0 and f∗(1) = 1. Let ω ∈ τ(X). For any subbasic open
neighborhood θ(G) of f∗(ω) in (τ(Y ), θη), where G is open in (Y, η),
G is θ-open in (Y, f∗(ω)). By Theorem1.4 f−1(G) is θ-open in (X,ω).
Thus ω ∈ θ(f−1(G)). Hence θ(f−1(G)) is an open neighborhood of ω in
(τ(X), θτ ).

Now we will prove that f∗(θ(f−1(G))) ⊂ θ(G). Let ζ ∈ θ(f−1(G)).
Then f−1(G) is θ-open in (X, ζ). Since naturally the map f : (X, ζ) →
(Y, f∗(ζ)) is continuous, G is θ-open in (Y, f∗(ζ)). This implies that
f∗(ζ) ∈ θ(G). Thus we have

Theorem 4.9. Let f :(X, τ) → (Y , η) be a continuous surjective
map. If we define a map f∗:(τ(X), θτ ) → (τ(Y ), θη) by f∗(w)={U ⊂
Y |f−1(U) ∈ w}, then the map f∗ is continuous. If γ ≤ δ, then f∗(γ) ≤
f∗(δ) and f∗(τ)≥η. And for any θ topology field ζ, the diagram

(X, τ)
f−→ (Y, η)

↓ ζ ↓ f∗(ζ)

(τ(X), θτ )
f∗−→ (τ(Y ), θη)

commutes. Furthermore, if (Z, λ) is a topological space and g: (Y , η)
→ (Z, λ) is a map, then

(g ◦ f)∗ = g∗ ◦ f∗.

Finally, if f :(X ,τ) → (X, τ) is the identity homeomorphism, then so is
f∗.

Proof. The continuity of the map f∗:(τ(X), θτ ) → (τ(Y ), θη) was
proved already. And the commutativity of the diagram follows from
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the next fact.

f∗(ζp) = {U |f−1(U) ∈ ζp}
= {U |p ∈ f−1(U) ∈ ζ}
= {U |f(p) ∈ U, f−1(U) ∈ ζ}
= {U |U ∈ f∗(ζ), f(p) ∈ U}
= f∗(ζ)f(p).

All other statements follow directly from the definitions.

Additionally, if f is open and closed and ω ∈ θ(f−1(G)), then f−1(G)
is θ-open in (X, ω). By the Theorem 1.5, G is θ-open in (X, f∗(ω)), i.e.
f∗(ω) ∈ θ(G). That is, ω ∈ f−1∗ (θ(G)). Consequently we have the
following theorem.

Theorem 4.10. If f : (X, τ) → (Y, η) is a continuous and open and
closed surjective map, then for any open G in Y

f−1
∗ (θ(G)) = θ(f−1(G)).

Let (X, τ) and (Y, ζ) be topological spaces. We may assume that τ(X)
and τ(Y ) are given the topologies θτ and θζ respectively and assume that
τ(X × Y ) is given topology θτ×ζ . Next theorem is the result.

Theorem 4.11. The multiplication × : τ(X)× τ(Y ) → τ(X × Y ) is
continuous.

Proof. Let (α, β) ∈ τ(X)×τ(Y ). Then α×β ∈ τ(X×Y ). If θ(W ) is a
neighborhood of×(α, β) = α×β, where W is open in (X×Y, τ×ζ). Then
we may assume that W = WX×WY is basic open set in (τ(X×Y ), τ×ζ).
Since projection maps are open maps, πX(W ) = WX and πY (W ) = WY

are also open sets in (X, τ) and (Y, ζ) respectively. Since W is θ-open in
(τ(X × Y ), α × β), projection maps WX and WY are θ-opens in (X, α)
and (Y, β) respectively. Hence (α, β) ∈ θ(WX) × θ(WY ). Moreover
×(θ(WX)×θ(WY )) ⊂ θ(W ). In fact, if δ ∈ θ(WX) and γ ∈ θ(WY ), then
WX is θ-open in (X, δ) and WY is θ-open in (Y, γ). Since the product
of θ-opens is θ-open [6], W = WX × WY is θ-open in (X × Y, δ × γ).
Therefore δ × γ ∈ θ(W ). This completes the proof.

Hence we have

Theorem 4.12. Let (X, τ) and (Y, ζ) be topological spaces. Then

τθ × ζθ = (τ × ζ)θ.
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Consequently we have the following commutative diagram:

τ(X)× τ(Y ) ×−→ τ(X × Y )

↓ θ × θ ↓ θ

τ(X)× τ(Y ) ×−→ τ(X × Y ).

Proof. Let U × V ∈ τθ × ζθ. Then U , V are θ-open sets in (X, τ),
(Y, ζ) respectively. By the Theorem 5 in [6], U × V is a θ-open set in
(X × Y, τ × ζ). Hence U × V ∈ (τ × ζ)θ. Conversely if W is a θ-open
in (X × Y, τ × ζ). Then projection πX(W ) and πY (W ) are θ-opens in
(X, τ) and (Y, ζ) respectively. This completes the proof.

Again we consider Θ as a map from τ(X) to τ(τ(X)) defined by Θ(η) =
θη, then we have next result:

Theorem 4.13. Let (X, τ) be a topological space. Then the induced
map

Θ : (τ(X), Υ) → (τ(τ(X)), Υ)
is continuous.

Proof. Let ζ ∈ τ(X) and K is a neighborhood of Θ(ζ) = θζ where K
is upper set in τ(τ(X)). On the other hand the upper set ↑ (ζ) in τ(X)
is a neighborhood of ζ. We will show that Θ(↑ (ζ)) ⊂ K. Let δ ∈↑ (ζ).
Then δ ≥ ζ and θδ ≥ θζ . Hence we have θδ ∈ K.

The map Θ : (τ(X), θτ ) → (τ(X), θτ ) will be called Θ-operator from
τ(X) to τ(τ(X).

Corollary 4.14. Let (X, τ) be a topological space. Then the in-
duced map

Θ : (τ(X), θτ ) → (τ(τ(X)), θθτ )
is continuous.
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