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THETA TOPOLOGY AND ITS APPLICATION TO THE
FAMILY OF ALL TOPOLOGIES ON X

JAE-Ryong Kiv*

ABSTRACT. Topology may described a pattern of existence of ele-
ments of a given set X. The family 7(X) of all topologies given on a
set X form a complete lattice. We will give some topologies on this
lattice 7(X) using a topology on X and regard 7(X) a topological
space.

Our purpose of this study is to give new topologies on the family
7(X) of all topologies induced by old one and its 6 topology and to
compare them.

1. Introduction

Let X be a set. The family 7(X) would consist of all topologies on a
given fized set X. Here we want to give topologies on the family 7(X)
of all the topologies using the given a topology 7 on X and compare the
topologies from new one.

The family 7(X) of all topologies on X form a complete lattice, that
is, given any corlection of topologies on X, there is a smallest (respec-
tively largest) topology on X containing(contained in) each member of
the corlection. Of course, the partial order < on 7(X) is defined by
inclusion C naturally.

The smallest topology in this lattice 7(X) is {0, X} and the largest
one is P(X). These topologies will sometimes be denoted by 0 and 1
respectively.

In the sequel, the closure and interior of A are denoted by A and
int(A) in a topological space (X, 7). The 6-closure of a subset G of a
topological space (X, 7) is defined [12] to be the set of all point z € X
such that every closed neighborhood of z intersect G non-emptily and is
denoted by Gy(cf. [1],[6]). Of course for any subset G'in X, G C G C Gy
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and Gy is closed in X. The subset G is called #-closed if Gy = G. If G
is open, the G = G.

Similarly, the #-interior of a subset G of a topological space (X, 7) is
defined to be the set of all point z € X for which there exists a closed
neighborhood of x contained in G. The #-interior of GG is denoted by
intgG. Naturally, for any subset G in X, intg(G) C G. An open set U
in (X, 7) is called #-open if U = inty(U). By the definition of §-open,
the corlection of all 8-open in a topological space (X, 7) form a topology
79 on X which will called the 6 topology induced by 7 which is related
to the semi-regular topology on (X, 7).

The semi-regular topology 75 is the topology having as its base the
set of all regular open sets. A subset A of a topological space X is called
reqular open [11] if A = intA. For any subset A of X, int(A) is always
regular open. The corlection of all regular open subsets of a topological
space (X, ) form a base for a topology 75 on X coarser than 7, (X, 7y)
is called the semiregularization of (X, 7).

THEOREM 1.1. [6] Let X be a topological space. If V. C X is 6-open
and x € V then there exists a regular-open set U such that x € U C
UcV.

Theorem 1.1 implies that in any topological space, 79 < 75 < 7. The
converse need not true [6]. The following theorems are stated in [6].

THEOREM 1.2. A topological space (X, T) is regular if and only if
Tg=T.

THEOREM 1.3. Let A C X be 0-closed and x ¢ A. Then there exists
a regular-open set which separate x and A.

THEOREM 1.4. Let f : X — Y be continous. If V C Y is 0-open,
then f~1(V) is f-open.

THEOREM 1.5. Let f : X — Y be a function from X onto Y that is
both open and closed. Then f preserves 0-open sets.

We should recall the definitions of almost-continuity and #-continuity:
A function f : X — Y is almost-continuous(f-continuous) if for each
x € X and each regular-open V( open V') containing f(z), there exists
a open set U containing z such that f(U) C V (f(U) C V). It readily
follows that continuity = almost-continuity = 6-continuity.
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2. Compare of 6 topologies defined different topologies

To notice the closure and interior of a subset A in the specific topo-
logical space (X, 7), they will be denoted by A™ and int™ (A) instead of A
and int(A) respectively. Hence an #-interior of G in (X, 7) is denoted by
inty(G) and an #-open set U in (X, 7) will be denoted by U = intj(U).

LEMMA 2.1. Let ¢, n be topologies on X. If ¢ < n, then A" C AS
and intS(A) C int"(A). Hence if A is open and closed in (X, (), then A
is also open and closed in (X, n) respectively.

Proof. We will prove only the closed case. The other case follows di-
rectly from the definition. Let € A”. Then for any open neighborhood
G of x in (X, 7n), GNA # (. This implies that for any open neighborhood
Gof zin (X,(¢), GNA # (. Hence A" C AS. Consequently if A is closed
in (X,¢) then A C A" C AS = A. Therefore A is closed in (X,n). O

THEOREM 2.2. Let ¢, n be topologies on X and ( < 7. Then (y < ng.

Proof. We will be sufficient to prove that if U is #-open in (X, (),
then it is also f-open in (X,7n). Let U be a 6-open set in (X, (). Then
U= intg(U ). Let x € U. Then there exists a closed neighborhood V/
of z in (X, () which contained in U. Since ( < 7, By above Lemma
2.1, V is also a closed neighborhood V' of = in (X, n) which contained in
U. This implies U C int)(U) C U. Hence U is #-open in (X,n). This
completes the proof. ]

3. Topologies on the family 7(X) induced from by a given
topology 7

Let (X, 7) be a topological space. We want to give some topologies
on 7(X) induced by the given topology 7 and compare these topologies.

DEFINITION 3.1. [5] Let (X, 7) be a topological space, and G € T .
Let i(G)={¢eT(X) |Ge(} and denote e={i(G)|GET}, a family of subset
of 7(X). Then there is exactly one topology In, on 7(X) with € as a
subbasis. We will call this topology as inner topology induced by the
topology 7. Note that Inj need not be the discrete topology in 7(X).

THEOREM 3.2. [4] (7(X), In1) is Ty space.
Let ( < mn. Forall G € ¢, G € n. That is, if ¢ € i(G), then

i(G) N {n} # 0. This implies ¢ € {n}. Conversely ¢ € {n} implies
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¢ < n. If this relation holds we say that ¢ is a specialization of 7 [7]. For
any 1 € 7(X) we will denote the subset {¢ € 7(X)|¢ > n} by T (n). (We
shall also use later the notation | (1) for {¢ € 7(X)|¢ < n}. Then since
i(G)={Cer(X)|GeC}, i(G) =1({hX,G}). Hence C € [}
iff ¢ < n. Since Alezandrov topology T on 7(X) is the corlection of all
upper sets in 7(X) (i.e. sets U such that n € U and n < ¢ imply ¢ € U)
[7], i(G) € Y. Hence we have the following result

THEOREM 3.3. [4] If 7 < ( < 1, then In, < In; <1Iny < 7T.
Combining this theorem and Theorem 1.1 we can have

COROLLARY 3.4. In,, <In, <In, <Iny <7,
(Ins)g < (Ing)s < Iny < Ing < T.

Now we will consider the continuity of induced maps. The next the-
orem was known in [4]:

THEOREM 3.5. Let f:(X, 7) — (Y, n) be a continuous map. If we
define a map fi:(7(X), In;) — (1(Y), Iny,) by fu(w)={U C Y|f~Y(U) €
w}, then the map f, is continuous. If v < 0, then f.(v) < f«(d) and
f«(T)>n. If, furthermore, (Z, ) is a topological space and g: (Y, n) —
(Z, 0) is a map, then

(go f)e=g«o fu
Finally, if f:(X ,7) — (X, 7) is the identity homeomorphism, then so is
s

If we consider In as a map from 7(X) to 7(7(X)) defined by In(n) =
In,, then we have some result:

THEOREM 3.6. [4] In : (7(X),T) — (7(7(X)),T) is continuous.

Proof. Let ( € 7(X) and K is a neighborhood of In(¢) = In¢. Then
K is a upper set in 7(7(X)). On the other hand the upper set T (¢) in
7(X) is a neighborhood of (. We will show that In(T ({)) C K. Let
d €7 (¢). Then 6 > ¢ and Ins > In¢. Hence we have Ins € K. O

COROLLARY 3.7. In : (7(X), In;) — (7(7(X)), Inry,,) Is continuous.

Proof. Since In; is subset of T whose elements i(G)s are all upper
set, it is clear that the restriction function is continuous. O

Let f: (X, 7) — (Y, n) be a continuous surjective map. If we define a
map fi : 7(X) — 7(Y) by fu(w)={U C Y|f 1 (U) € w}, then £.(0) =0
and f.(1) = 1. Let w € 7(X). For any subbasic open neighborhood
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i(G) of fi(w), G € fi(w). Thus f~1(G) € w. Hence w € i(f~1(Q)).
So that i(f~!(G)) is an open neighborhood of w. Conversely, if ¢ €
i(f7H@)) then fHG) € ¢, G € £.(C), f+(C) €i(G), and ¢ € f71(i(G)).

Consequently we have

FHEG) = i(f7HG)).

Note that i(G) U {0} is also complete sublattice of 7(X) for a G € 7.
We will denote this sublattice i(G) U {0} by ir(G). Then naturally we
can restrict domain of definition of f, to ip(H) for some open H in X.
Hence we can have f, : ip(f~1(G)) — ir(G) for each open G in (Y, 7).
Thus we can have:

THEOREM 3.8. [4] Let f:(X, 7) — (Y, n) be a continuous bijective
map. Then the induce map f, : ir(f~1(G)) — ir(G) is bijective for
each open G in (Y, 7).

Let X, Y be sets. Then the cardinality of 7(X) x 7(Y) is quite
different to the cardinality of 7(X xY). For example, let X = {a,b},Y =
{1,2,3,}. Then card(7(X))= 4, card(7(Y")) = 29. But card(r(X x Y))
= 209525 [9].

Hence we have 7(X x Y) 2 7(X) x 7(Y) in general.

Let (X,7) and (Y, () be topological spaces. We may assume that
7(X) and 7(Y") are given the topologies In, and In¢ respectively and
assume that 7(X x Y) is given topology In;y¢. The multiplication
X :7(X) x7(Y) = 7(X xY) is defined by x(«,5) = o x [ naturally.
Then we have

THEOREM 3.9. The multiplication x : 7(X) x 7(Y) — 7(X x Y) is
continuous.

Proof. Let (a,8) € 7(X) x7(Y). Then ax f € 7(X xY). If i(W) is
a neighborhood of x(«, 8) = a x 3, where W is open in (X x Y, 7 x ().
Then we may assume that W = Wx x Wy is basic open set in (7(X X
Y),a x (3). Hence since projection maps are open maps, mx (W) = Wx
and 7y (W) = Wy are also open sets in (X, «) and (Y, 3) respectively.
Hence (o, ) € i(Wx) x ¢(Wy). Moreover x(i(Wx) x i(Wy)) C i(W).
In fact, if § € i(Wx) and v € i(Wy), then Wx € § and Wy € ~. Hence
W =Wx x Wy € § x . This completes the proof. O

Hence we have

THEOREM 3.10. Let (X, 7) and (Y, () be topological spaces. Then
we have the following commutative diagram:
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7(X) x 7(Y) = (X xY)
lInxIn L In
T(7(X)) x 7(7(Y)) = T(r(X xY)).

Proof. It is sufficient to show that x(In, x Ing) = Ingxp for an
element (o, f) € 7(X) x 7(Y). Let (o, B) € i(U) x i(V) € Ing x Ing.
Then U and V are open sets in (X, a) and (Y, 3) respectively. Hence
UxV isan open set in (X XY, ax3). Hence UxV € (axf),ie.(axf) €
X (i(U)xi(V)) Ci(UxV). Hence x(Ing xIng) C Ingxg. Conversely if
dx vy € (W) where W is an open in (X XY, 7 x (). Then we may assume
that W = Wx x Wy is basic open set in (X x Y, 7 x (). Hence, the
projections mx (W) = Wx and my (W) = Wy are open sets in (X, 7) and
(Y, ¢) respectively. Moreover x(i(Wx) x i(Wy)) C i(W). Consequently
we have X(Ing x Ing) O Ingxg This completes the proof. O

4. Topology on the family 7(X) related to the 6 topologies
on X

DEFINITION 4.1. Let (X, 7) be a topological space, and G € 7. Let
0(G)={Ce7(X)|Gisf —openin( }. And denote 5 = {6(G)|G € T},
a family of subset of 7(X). Then there is exactly one topology 6, on
7(X) with 3 as a subbasis. We will call the 6, the 6 topology induced
by the topology 7.

THEOREM 4.2. If 1 < (<1, then 0, <0, <0; <T.

Proof. For any G € 7 < (, by the definition of §(G), we can naturally
have 6, < 6;. Now we will prove that every §(G) is upper set in 7(X).
Let 6 € 0(G). Then G is an G-open in (X,0). Hence G € dy. If 6 < ,
we have by Theorem 2.1, G € ~y. This means G is f-open in (X, 7).
That is v € 0(G). Hence 0(G) is upper set in 7(X). This completes the
proof. O

Now we consider 6 as a map from 7(X) to 7(X). Then we can define
map 6 by 6(n) = ny. Consequently we have next result:

THEOREM 4.3. Let (X, 7) be a topological space. Then the induced
map
0:(7(X),0r) — (7(X),0r)

Is continuous.
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Proof. Let ¢ € 7(X) and 6(K) is a neighborhood of 6(¢) = (y where
K € 7. Then since (9 = {U € (|U : § —open in (X, ()}, K is a #-open
set in (X, (p). Hence it is also f-open in (X, ¢). Consequently ¢ € 6(K),
i.e. §(K) is a neighborhood of ¢ which satisfied that #(6(K)) C 0(K).
This completes the Theorem. ]

The map 6 : (7(X),0;) — (7(X), 0;) will be called f-operator. Moreover
this map satisfies that

COROLLARY 4.4. 0(C An) <0(() ANb(n) and (¢) VO(n) < O(CVn).

Proof. This corollary follows from the above definition of map 6 and
Theorem 4.1. O

Now we want to know the relations between 6, and In.,. Let n €
0(G) € 0,, then G € n, i.e. n € i(G). Hence it is natural that §(G) C
i(G). Let i(G) be a sub basic open in In,,. Then G € 75. Hence G
is #-open in 7, that is , G = int}(G). Hence if n € i(G) and (X,7) is
regular, then by above Theorem 1.2, G is also f-open in (X,n). Hence
n € 0(G), i.e. i(G) = 0(G). Thus we have the following theorem.

THEOREM 4.5. Let (X, 7) is a regular space. If we denote Tyeq(X)
by the subset of all regular topologies in 7(X). Then the subspace
Treg(X) of the space (7(X),0;) and the subspace T.q(X) of the space
(1(X),Ing,) are identical.

For a topological space (X, 7), the corlection of all open neighbor-
hoods of p and empty set, that is, {V € 7|p € V} U {0} becomes a
topology on X for any point p € X. We will denote such a topology by
7p and call localized topology of T at p. Furthermore, we will denote the
localized topology of the discrete topology P(X) on X at p by 1,,.

Denote 7,(X) = {n, | n € 7(X)} for a point p € X. Since 7(X)
is a complete lattice, we can easily find that 7,(X) is a sublattice of
7(X). The smallest element of this sublattice 7,(X) is 0,=0, the largest
element is P(X),=1,#1. We will call this sublattice 7,(X) as sublattice
of all localized topologies at p in X.

Now we will regard any member 7 of 7(X) as a map from X to
UpTp(X) C 7(X) defined by 7(p) = 7,. Hence this map 7 acts like a
vector field on X. Such a map f: X — 7(X) defined by f(p)e 7,(X)
will be called topology field on X [5].

THEOREM 4.6. [5] Topology field (:(X,7) — (7(X), In;) is continu-
ous.

Now we will prove
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THEOREM 4.7. If (X, () is a 6 topological space, then the topology
field (:(X,7) — (7(X), ;) is continuous.

Proof. Let p €X and 6(G) be a subbasic open neighborhood of {(p)=¢,.
Then G is f-open in (X, (,). This implies G is #-open in (X, () because
G is open set in (X, ¢) which contains the point p. Moreover since Ger,
G is a neighborhood of p. Hence if ¢eG, ((q)=(,€8(G), so that {(G) C
0(G). This shows that topology field ¢ is continuous. O

COROLLARY 4.8. If (X,() is a regular topological space, then the
topology field ¢:(X,7) — (7(X), ;) is continuous.

Let f: (X, 7) — (Y, n) be a continuous surjective map. If we define
amap fo: (1(X),0:) — (r(Y),0,) by fo(w)={U € Y|f'(U) € w},
then f.(0) = 0 and f.(1) = 1. Let w € 7(X). For any subbasic open
neighborhood 0(G) of f.(w) in (7(Y),6,), where G is open in (Y,7),
G is f-open in (Y, fi(w)). By Theoreml.4 f~1(G) is f-open in (X,w).
Thus w € §(f~1(G)). Hence 0(f~1(G)) is an open neighborhood of w in
(7(X),67).

Now we will prove that f.(0(f~1(G))) C 0(G). Let ¢ € 0(f~1(Q)).
Then f~!(G) is f-open in (X, ). Since naturally the map f : (X, () —
(Y, f«(¢)) is continuous, G is f-open in (Y, f.(¢)). This implies that
1«(¢) € 6(G). Thus we have

THEOREM 4.9. Let f:(X, 7) — (Y, n) be a continuous surjective
map. If we define a map f.:(7(X),0;) — (7(Y),0,) by fi(w)={U C
Y|f~1(U) € w}, then the map f. is continuous. If v < 6, then f.(y) <
f«(6) and f(7)>n. And for any 6 topology field ¢, the diagram

(X,7) A (Y,n)
1 ¢ 1 £:(Q)
(T(X), 0,) ELN (T(Y),6,)

commutes. Furthermore, if (Z, \) is a topological space and g: (Y, n)
— (Z, \) is a map, then

(gof)e=g«o fu
Finally, if f:(X ,7) — (X, 7) is the identity homeomorphism, then so is
fe

Proof. The continuity of the map f.:(7(X),0,) — (7(Y),0,) was
proved already. And the commutativity of the diagram follows from
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the next fact.

f(G) = {UIFHU) €}
= {Ulpe f'(U) e
= {Ulfp) e U, fHU) e}
= {U|U € f.(¢), f(p) € U}
= [(Qrw)-

All other statements follow directly from the definitions. O

Additionally, if f is open and closed and w € 8(f~(G)), then f~1(G)
is f-open in (X,w). By the Theorem 1.5, G is f-open in (X, fi(w)), i.e.
fe(w) € 6(G). That is, w € f1((G)). Consequently we have the
following theorem.

THEOREM 4.10. If f : (X,7) — (Y,n) is a continuous and open and
closed surjective map, then for any open G in Y

FHO(G)) = 0(f7H(G)).

Let (X, 7) and (Y, ¢) be topological spaces. We may assume that 7(X)
and 7(Y') are given the topologies 6, and 6 respectively and assume that
7(X x Y) is given topology 6,x¢. Next theorem is the result.

THEOREM 4.11. The multiplication X : 7(X) x 7(Y) —» 7(X x Y) is
continuous.

Proof. Let (a, ) € 7(X)X7(Y). Thenaxp € 7(X xY). If (W) isa
neighborhood of x («a, f) = ax 3, where W is open in (X XY, 7x(). Then
we may assume that W = Wx x Wy is basic open set in (7(X xY'), 7x().
Since projection maps are open maps, 7x (W) = Wx and 7y (W) = Wy
are also open sets in (X, 7) and (Y, () respectively. Since W is #-open in
(1(X xY),a x ), projection maps Wx and Wy are #-opens in (X, «)
and (Y, ) respectively. Hence («a,3) € 0(Wx) x §(Wy). Moreover
x(@(Wx)x 0(Wy)) C (W). In fact, if § € 0(Wx) and v € (Wy ), then
W is f-open in (X, ) and Wy is f-open in (Y,~y). Since the product
of #-opens is f-open [6], W = Wx x Wy is f-open in (X x Y,d x 7).
Therefore § x v € §(W). This completes the proof. O

Hence we have
THEOREM 4.12. Let (X, 7) and (Y, () be topological spaces. Then

TQXCQI(TXC)Q.
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Consequently we have the following commutative diagram:

X

7(X) x 7(Y) — T(X xY)
16x86 1o
7(X) x 7(Y) =, (X xY).

Proof. Let U x V € 19 x (. Then U, V are G-open sets in (X, 7),
(Y, ¢) respectively. By the Theorem 5 in [6], U x V is a 6-open set in
(X xY,7x(). Hence U x V € (7 x ()g. Conversely if W is a #-open
in (X xY,7 x (). Then projection mx (W) and 7y (W) are #-opens in
(X, 7) and (Y, ¢) respectively. This completes the proof. O

Again we consider © as a map from 7(X) to 7(7(X)) defined by ©(n) =
6, then we have next result:

THEOREM 4.13. Let (X, 7) be a topological space. Then the induced
map
O:(r7(X),T) — (r(7(X)),T)

is continuous.

Proof. Let ( € 7(X) and K is a neighborhood of ©(() = 6 where K
is upper set in 7(7(X)). On the other hand the upper set T (¢) in 7(X)
is a neighborhood of ¢. We will show that ©(7 ({)) C K. Let ¢ €7 (¢).
Then § > ¢ and 65 > 6. Hence we have 05 € K. O

The map O : (7(X),60,) — (7(X),6;) will be called ©-operator from
7(X) to 7(7(X).

COROLLARY 4.14. Let (X,7) be a topological space. Then the in-

duced map
O : (1(X),0r) — (1(1(X)), bs,)

is continuous.
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